主 办:爆炸科学与技术国家重点实验室
安全与防护协同创新中心
报告题目:Intelligent Decarbonisation
报告人:Prof. Markus Kraft
University of Cambridge,UK
时间:2020年1月13日上午09:00
地点:北京理工大学3号教学楼146会议室
报告人简介:
Prof Markus Kraft is a Fellow of Churchill College Cambridge and Professor in the Department of Chemical Engineering and Biotechnology. He is the director of CARES, the Singapore-Cambridge CREATE Research Centre, and Principle Investigator of C4T the “Cambridge Centre for Carbon Reduction in Chemical Technology”, which is a CARES research programme. Professor Kraft obtained the academic degree 'Diplom Technomathematiker' at the University of Kaiserslautern in 1992 and completed his Doctor rerum naturalium in Chemistry at the same University in 1997. Subsequently, he worked at the University of Karlsruhe and the Weierstrass Institute for Applied Analysis and Stochastics in Berlin. In 1999 he became a lecturer in the Department of Chemical Engineering, University of Cambridge. In 2012 he obtained a ScD form the same University. He has a strong interest in the area of computational modelling and optimisation targeted towards developing CO2 abatement and emissions reduction technologies for the automotive, power and chemical industries.
报告摘要:
Global warming caused by greenhouse gases have caused great concern for a number of reasons. It is clear that drastic changes have to be implemented in the near future to reduce or stop the increase of average temperature and the many negative consequences that go with it. In my talk I shall concentrate on AI-based Cyberphysical systems and knowledge graphs. The decarbonisation of energy provision is key to managing global greenhouse gas emissions and hence mitigating climate change. Digital technologies such as big data, machine learning, and the Internet of Things are receiving more and more attention as they can aid the decarbonisation process while requiring limited investments. The orchestration of these novel technologies, so-called cyber-physical systems (CPS), provides further, synergetic effects that increase efficiency of energy provision and industrial production, thereby optimising economic feasibility and environmental impact. This comprehensive review article assesses the current as well as the potential impact of digital technologies within CPS on the decarbonisation of energy systems. Ad-hoc calculation for selected applications of CPS and its subsystems estimates not only the economic impact but also the emission reduction potential. This assessment clearly shows that digitalisation of energy systems using CPS completely alters the marginal abatement cost curve (MACC) and creates novel pathways for the transition to a low-carbon energy system. Moreover, the assessment concludes that when CPS are combined with artificial intelligence (AI), decarbonisation could potentially progress at an unforeseeable pace while introducing unpredictable and potentially existential risks. The cyber-physical system we are currently developing is called J-Park Simulator (JPS) which is the signature project in the C4T programme of CARES at the University of Cambridge and part of the http://www.theworldavatar.com/ project. JPS consists of a network of IRIs comprising domain ontologies, a knowledge base and different types of agents. One important application is the modelling and optimisation of eco-industrial parks. This includes the electrical grid, various networks of materials, for example, waste heat network along with a detailed model of each industrial process. In my talk I shall explain how JPS works and show a couple of examples.